Infection à VIH :
une rémission possible

Asier Sáez-Cirión, PhD
Unité de Régulation des Infections Rétrovirales
Institut Pasteur, Paris, France
Viral reservoirs persist in HIV-infected individuals receiving cART

Finzi et al. Cells 1997
Viral replication resumes as soon as therapy is interrupted
Targeting viral reservoirs

Draining ➔ Eradication

Limiting ➔ Remission
HIV controllers (HIC): infected individuals spontaneously controlling HIV-1 infection

- Optimal T response
- Preserved immune functions
- Repression of viral reservoir
- Reduced dynamics of viral replication
- Attenuated virus
- Cell restriction
- Innate responses (NK/pDC)

Pancino and Saez-Cirion. Immunological Reviews. 2013
Favorable genetic background and Efficient CD8 T cell responses are associated with control

- Greater and faster upregulation of cytotoxic mediators
- MHC and TCR plasticity—Chen et al Nat Immunol 2012; Pereyra et al Science 2010; Bailey et al JEM 2006
Is it possible to induce a HIV controller-like status?

VISCONTI Study
Virological and Immunological Studies in CONtrollers after Treatment Interruption
ANRS VISCONTI: Post-Treatment Controllers (PTC)

Therapy started within 10 weeks following Primary Infection
Therapy started 39 days p.i.

3 years on therapy followed by 7.5 years of control off therapy

Saez-Cirion et al PLoS Path 2013
Post-treatment controllers have a tougher primary infection than HIV controllers

Saez-Cirion et al PLoS Path 2013
Post-treatment controllers don’t have a favorable MHC background
Post-treatment controllers have weak HIV-specific CD8+ T cell responses

Saez-Cirion et al PLoS Path 2013
Post-treatment controllers have weak levels of T cell activation
Post-treatment controllers have low levels of HIV-1 DNA in PBMC, which further decreased after treatment interruption in some cases.

Saez-Cirion et al PLoS Path 2013
Skewed CD4 subsets distribution in PTC impacts the subsets contribution to the HIV reservoir

Resting CD4 Cell Subsets Contribution to the HIV reservoir

- A contribution to the HIV reservoir:
 - Major for TTM subset
 - Low for the TN and TCM subsets

Saez-Cirion et al PLoS Path 2013
A long-term treatment initiated during primary infection seems to increase the chances to control viremia

Natural control of infection: 81 HIC from 34 317 patients followed-up: 0.24%

Early treatment induced control of infection:
Hocqueloux et al AIDS 2010: N=32 patients, 15.6% VL<50 at M24
Goujard et al Antivir Ther 2013: N=164 patients, 8.5% VL<50 at M24

3538 patients included in the FHDH within 6 months of primary infection 1997-2011

756 patients treated within 6 months and at least for a year

74 patients with a viral load below <50 RNA copies/ml who stop

Probability to keep controlling infection at 24M (loss of control: 2VL>50 RNA copies/ml or 1VL>50 RNA copies/ml +cART) : 15.7% [6.5-28.5]

Saez-Cirion et al PLoS Path 2013
<table>
<thead>
<tr>
<th>HIV controllers (HIC)</th>
<th>Post-Treatment Controllers (PTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic primary infection, low viral loads and high CD4 T cell counts in PHI</td>
<td>Symptomatic primary infection, high viral loads and low CD4 T cell counts in PHI</td>
</tr>
<tr>
<td>80% HIC carry one protective HLA-class I allele</td>
<td>57% PTC carry one HLA-class I allele associated with high viral loads</td>
</tr>
<tr>
<td>Generally strong HIV-specific T cell responses with strong capacity to eliminate infected cells</td>
<td>Generally very weak HIV-specific T cell responses with poor capacity to eliminate infected cells</td>
</tr>
<tr>
<td>Abnormal high levels of T cell activation</td>
<td>Low levels of T cell activation</td>
</tr>
<tr>
<td>Estimated frequency: 0.5% of HIV infected patients</td>
<td>Estimated frequency: 5-15% of HIV infected patients interrupting a >12 months-length treatment initiated in primary infection</td>
</tr>
</tbody>
</table>
Conclusions from the VISCONTI study

We have identified a group of HIV patients in virological remission, who are able to maintain a durable control of viral replication after treatment interruption.

Overall, these patients have a different HLA profile, lower frequency and quality of HIV-specific CD8+ T cell responses, and lower CD8+ T cell activation than “natural” HIV controllers.

Post-treatment controllers have a weak HIV reservoir in which there is a minor contribution of long-lived cells.

Post-treatment control Patients in the VISCONTI study was likely achieved through early and long-lasting therapeutic intervention.
cART initiation during primary infection deeply impacts on HIV reservoirs

Hocqueloux et al, JAC 2013
However, a weak HIV reservoir is not enough

Rebound of plasma viremia following cessation of antiretroviral therapy despite profoundly low levels of HIV reservoir: implications for eradication

Tae-Wook Chun, J. Shawn Justement, Danielle Murray, Claire W. Hallahan, Janine Maenza, Ann C. Collier, Prameet M. Sheth, Rupert Kaul, Mario Ostrowski, Susan Moir, Colin Kovacs and Anthony S. Fauci

![Graph showing rebound of plasma viremia after discontinuation of ARV therapy.](image-url)
EARLY TREATMENT

Limiting the establishment of the viral reservoir
- Limiting viral diversity
- Reducing immune activation
- Preserving and cooperating with immune responses

Limiting the dynamics of viral replication in acute infection may be crucial for spontaneous control of infection
HIV remission in a 28-month old Perinatally-infected child (Mississippi Toddler)

![Graph showing HIV-1 RNA levels over time and drug regimens.]

- **HIV-1 RNA (copies/ml)**
 - 19,812 c/ml (4.3 log)
 - 2,617 c/ml (3.4 log)
 - 516 c/ml (2.7 log)
 - 265 c/ml (2.4 log)
 - <48 c/ml (<1.68 log)

- **Age (days)**
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100

- **Months of Life**
 - 0
 - 20
 - 25
 - 30

Closed symbols = Detectable
Open Symbols = Undetectable Viral Load

Off ART:
Plasma HIV RNA undetectable
HIV ELISA Negative
HIV-DNA PCR Negative

Regimen #1: AZT/3TC/NVP (31 hours - 7 days of life)
Regimen #2: AZT/3TC/LPV/ritonavir (7 days - 18 months of life)

Persaud et al, CROI 2013
World-wide observations of post-treatment controllers

Remember: treatment interruption is not recommended outside structured protocols!!!
OBJECTIVES

• To build an international cohort of Post Treatment Controllers in order to:
 – Uncover mechanisms underlying viral control, i.e. HIV remission
 – Identify predictive markers associated with viral control after treatment interruption

• Main Outcome:
 To identify patients in whom HAART could be safely interrupted

CONTACT: visconti@anrs.fr
Patients and clinicians who participate in the studies

Institut Pasteur
Régulation des Infections Rétrovirales
Gianfranco Pancino
Françoise Barré-Sinoussi
Chiraz Hamimi
Annie David
Pierre Versmisse
Awatef Allouch
Anna Bergamaschi
Daniel Scott-Algara

CHU Necker
Laboratoire de Virologie
Christine Rouzioux
Véronique Avettand-Fenoel
Adeline Mélard

CHR Orléans La Source
Service Maladies Infectieuses
Laurent Hocqueloux
Thierry Prazuck

Kremlin-Bicetre
INSERM U1012
Alain Venet
Olivier Lambotte
Cécile Goujard
Jean-François Delfraissy
Isabelle Girault
Camille Lecuroux

ANRS CO6
“PRIMO”

ANRS CO18
“HIV controllers”

ANRS CO15
“ALT”

CHU Pitié-Salpetrière
INSERM UMR-S 945
Brigitte Autran
Victor Appay
Charline Bacchus
Benjamin Descours
Assia Samri
Ioannis Theodorou
Julien Guergnon

INSERM UPMC U943
Dominique Costagliola
Valérie Portard

FHDH
“French Hospital Database on HIV”

Acknowledgements

Awatef Allouch
Anna Bergamaschi
Daniel Scott-Algara

Brigitte Autran
Victor Appay
Charline Bacchus
Benjamin Descours
Assia Samri
Ioannis Theodorou
Julien Guergnon

Laurence Meyer
Faroudy Boufassa
George Nembot

Laurent Hocqueloux
Thierry Prazuck

INSERM U1018