

DEALING WITH UNCERTAINTY THE CHALLENGE OF LONG TERM PROJECTIONS IN LOW DATA RESOURCES COUNTRIES

ICASA, 5TH NOVEMBER 2011

Mouslihou Diallo, Pharm.D.

Pharmaceutical & biological manager – Solthis

Grégoire Lurton

Health Information Systems specialist – Solthis

Etienne Guillard, *Pharm.D. – MSc*

Pharmacy coordinator & PHPM specialist - Solthis

Forecasting process

Time framework

Forecasting process

Consequences of uncertain forecast

From 80 patients / month forecasted to 150 patients / month actually

Consequences of uncertain forecast

Forecasted & used quantity of TDF+3TC+EFV, 2009

Consequences of uncertain forecast

Forecasted & used quantity of D4T+3TC+NVP baby, 2009

Forecasting process

PART 1 DATA & MODELS

Situation 1 – Stability

Situation 1 – Stability

Situation 2 - Growth

Situation 2 - Growth

Situation 2 - Growth

Situation 2 – Growth

What do I need to make projections

- Baselines

 Number of patients currently on treatment
- Hypotheses on my programme future performances
 Rythm for initiation of new patients
- Parameters
 Proportion of patients who should get treatment

Type of data

- Epidemiological data
 - LocalHIV PrevalenceOI Incidence
 - Generic
 Proportion of patients in need of treatment
- Programmatic data
 Number of patients
 ART schemes repartition

Issues

- Rarely updated
- Rarely available for target population
- Large confidence intervals

Type of data

- Epidemiological data
 - LocalHIV PrevalenceOI Incidence
 - Generic
 Proportion of patients in need of treatment

Programme data

Number of patients
ART schemes
repartition

Issues

 Tendency to over / under estimate

 Very dependant on raw data

Programmatic Data

Programmatic Data

Different types of models

Simple models

Very complex

$$F_t = F_{t-1} + I_t - O_t$$

8000 patients at t=0

- + 300 new patients at t = 1
- 100 deaths and LTFU at t = 1

8200 followed up patients in t=1

What kind of projections

Simple models

A bit more complex

Very complex

Figure 1 - Architecture du modèle de projection.

FIGURE 1 - Architecture du modèle de projection.

What kind of projections

Simple models

A bit more comp

Very complex

Which model should I use?

- Too simple = little more than a guess
- More parameters= more uncertainty
- Need for uncertainty and sensitivity analysis
- Need to adapt model to national specificity

FIGURE 1 - Architecture du modèle de projection.

Programmatic Data

	High	Low
Baseline	8400	6400
Initiations	300	
Retention M6	90%	80%
Retention M6 - M12	95%	87%
Yearly retention >M12	97%	95%

Projection results

Things you can't input in your projection

- Program hazard
- External factors

- Improving Data availability
- Adapt model to situation
- Point estimate is not enough

PART 2 FROM NUMBERS TO FUNDING & PROCUREMENT

The question

How can procurement systems be efficient

and provide sustained access

to treatment for patients

in this context of uncertainty

How to manage uncertainty in funding & procurement systems?

- 1. At the step of forecasting
- 2. At the step of purchasing
- 3. At the step of implementation

At the step of forecasting

Quantifying and budgeting the needs

a. Define various scenarios based on estimates dispersion (low, middle & high)

The choice of the selected scenario is political

At the step of forecasting

b. take a margin into account

For example on various products

(Buffer stock is the first simple way to manage uncertainty...)

take a margin into account

Needs + CI x%

Take a margin into account

It is impossible to forecast the unexpected without overestimate

and to accept the consequences

- increased funding needs
- increased risk of loss by expiration

At the step of purchasing & tendering

Integrate a stock option mechanism:

establish contracts with suppliers based on minimum quantity + margin if necessary, margin can be ordered quickly

This option must be accepted by suppliers and donors and use sparingly

From forecast to reality

Program hazard & external factors will affect the forecasts and increase the uncertainty

From forecast to reality

Time

To ensure and anticipate the adequacy between forecasts & real needs

A clear view of the situation is needed (incl. data quality)

1st step: identify the risk

Est. needs

Today

Real needs

Real needs

Develop warning indicators & dashboards

To ensure and anticipate the adequacy between forecasts & real needs

Estimation de la disponibilité des Comprimés

Pays et/ou structure : XXX Méthode / type de données utilisées : Données suivi de file active

Date de mise à jour des données : 20/12/2010 Nature des stocks considérés : Stocks centraux & périphérique

Nb de patients concernés / mois

From forecast to reality

Time

To ensure and anticipate the adequacy between forecasts & real needs

A clear view of the situation is needed (incl. data quality)

-11 CS

1st step: identify the risk

2nd step: take decision on

rationalization

Political decision based on technical

3rd st procu

on But always need proactivity But always need procedure & quick procedure

Est. needs

Today

Real needs

	~ :			-	
IS		15	5	()	N
		$J \subset J$			

	N I 4	\sim 1		~ T	
Col	N(US	51(()

- Health information systems have to be strengthened for data quality and not only for M&E reporting
- In low data quality settings, we need to take into account uncertainty and to integrate forecasts range into subsequent process
- Bridges have to be built between PSM systems & HIS
- Consensus and political management on
 - Validation of hypothesis and targets
 - Relay choices that have been made to field practionners

 Harmonization of methods between stakeholders (both national and international levels)